Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Chem Biodivers ; : e202400296, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575390

RESUMO

1,3-Diheterocycloalkanes derivatives are important starting materials in fine organic synthesis. These compounds can be widely used in various fields such as industry, medicine, biotechnology and chemical technology. The paper is focused on synthesis and study of alkoxymethyl derivatives of diheterocycloalkanes (M1-M15) and inhibition effect on carbonic anhydrase and acetylcholinesterase. The structures of compounds were confirmed by 1H and 13C NMR spectroscopy. Also, in this study alkoxymethyl derivatives of diheterocycloalkanes were assessed for their influence on various metabolic enzymes, including acetylcholinesterase (AChE) and human carbonic anhydrase isoenzymes (hCA I and hCA II). The results demonstrated that all these compounds exhibited potent inhibitory effects on all the target enzymes, surpassing the standard inhibitors, as evidenced by their IC50 and Ki values. The Ki values for the compounds concerning AChE, hCA I, and hCA II enzymes were in the ranges of 1.02±0.17-8.38±1.02, 15.30±3.15- 58.14±5.17 and 24.05±3.70-312.94±27.24 nM, respectively.

2.
Mol Divers ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554169

RESUMO

An important research topic is the discovery of multifunctional compounds targeting different disease-causing components. This research aimed to design and synthesize a series of 2-aryl-6-carboxamide benzoxazole derivatives that inhibit cholinesterases on both the peripheral anionic and catalytic anionic sides. Compounds (7-48) were prepared from 4-amino-3-hydroxybenzoic acid in three steps. The Ellman test, molecular docking with Maestro, and molecular dynamics simulation studies with Desmond were done (Schrodinger, 12.8.117). Compound 36, the most potent compound among the 42 new compounds synthesized, had an inhibitory concentration of IC50 12.62 nM for AChE and IC50 25.45 nM for BChE (whereas donepezil was 69.3 nM and 63.0 nM, respectively). Additionally, compound 36 had docking values ​​of - 7.29 kcal/mol for AChE and - 6.71 kcal/mol for BChE (whereas donepezil was - 6.49 kcal/mol and - 5.057 kcal/mol, respectively). Furthermore, molecular dynamics simulations revealed that compound 36 is stable in the active gorges of both AChE (average RMSD: 1.98 Å) and BChE (average RMSD: 2.2 Å) (donepezil had average RMSD: 1.65 Å and 2.7 Å, respectively). The results show that compound 36 is a potent, selective, mixed-type dual inhibitor of both acetylcholinesterase and butyrylcholinesterase. It does this by binding to both the catalytically active and peripheral anionic sites of cholinesterases at the same time. These findings show that target compounds may be useful for establishing the structural basis for new anti-Alzheimer agents.

3.
Chem Biol Drug Des ; 103(2): e14482, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38378259

RESUMO

In this project, non-sulfonamide bistrifluoromethyl-derived hydrazide-hydrazones were synthesized as multi-target-directed ligands to treat Alzheimer's disease and then, the novel derivatives were characterized by diverse spectral methods. Acetylcholinesterase (AChE), and human carbonic anhydrase (hCA) inhibitory qualifications of these compounds were determined. The reported compounds (2a-y) were determined to be effective inhibitors of the hCA I, hCA II and AChE enzymes with Ki values in the range of 1.130 ± 0.15-5.440 ± 0.93 µM for hCA I, 0.894 ± 0.05-6.647 ± 1.35 µM for hCA II, and 0.196 ± 0.03-4.222 ± 1.04 µM for AChE. In silico studies were also performed to illuminate the binding interactions.


Assuntos
Doença de Alzheimer , Anidrases Carbônicas , Humanos , Acetilcolinesterase/metabolismo , Anidrases Carbônicas/metabolismo , Inibidores da Anidrase Carbônica , Inibidores da Colinesterase/química , Hidrazonas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade , Estrutura Molecular
4.
Arch Pharm (Weinheim) ; : e2300545, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38423951

RESUMO

A series of benzene sulfonamides 15-26 were synthesized and determined for their in vitro and in silico inhibitory profiles toward acetylcholinesterase (AChE) and carbonic anhydrases (CAs). Commercially available 3,4-dimethoxytoluene was reacted with chlorosulfonic acid to furnish benzene sulfonyl chloride derivatives. The reaction of substituted benzene sulfonyl chloride with some amines also including (±)-α-amino acid methyl esters afforded a series of novel benzene sulfonamides. In this study, the enzyme inhibition abilities of these compounds were evaluated against AChE and CAs. They exhibited a highly potent inhibition ability on AChE and -CAs (Ki values are in the range of 28.11 ± 4.55 nM and 145.52 ± 28.68 nM for AChE, 39.20 ± 2.10 nM to 131.54 ± 12.82 nM for CA I, and 50.96 ± 9.83 nM and 147.94 ± 18.75 nM for CA II). The present newly synthesized novel benzene sulfonamides displayed efficient inhibitory profiles against AChE and CAs, and it is anticipated that they may emerge as lead molecules for some diseases including glaucoma, epilepsy, and Alzheimer's disease.

5.
J Biochem Mol Toxicol ; 38(1): e23554, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855258

RESUMO

This work includes the synthesis of a new series of palladium-based complexes containing both morpholine and N-heterocyclic carbene (NHC) ligands. The new complexes were characterized using NMR (1 H and 13 C), FTIR spectroscopic, and elemental analysis techniques. The crystal structure of complex 1b was obtained by utilizing the single-crystal X-ray diffraction method. X-ray studies show that the coordination environment of palladium atom is completed by the carbene carbon atom of the NHC ligand, the nitrogen atom of the morpholine ring, and a pair of bromide ligand, resulting in the formation of slightly distorted square planar geometry. All complexes were determined for some metabolic enzyme activities. Results indicated that all the synthetic complexes exhibited powerful inhibitory actions against all aims as compared to the control molecules. Ki values of new morpholine-liganded complexes bearing 4-hydroxyphenylethyl group 1a-e for hCA I, hCA II, AChE, BChE, and α-glycosidase enzymes were obtained in the ranges 0.93-2.14, 1.01-2.03, 4.58-10.27, 7.02-13.75, and 73.86-102.65 µM, respectively. Designing of reported complexes is impacted by molecular docking study, and interaction with the current enzymes also proclaimed that compounds 1e (-12.25 kcal/mol for AChE and -11.63 kcal/mol for BChE), 1c (-10.77 kcal/mol and -9.26 kcal/mol for α-Gly and hCA II, respectively), and 1a (-8.31 kcal/mol for hCA I) are showing binding affinity and interaction from the synthesized five novel complexes.


Assuntos
Metano/análogos & derivados , Morfolinas , Paládio , Estrutura Molecular , Simulação de Acoplamento Molecular , Paládio/química , Ligantes , Morfolinas/farmacologia
6.
J Biochem Mol Toxicol ; 38(1): e23521, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37706603

RESUMO

N-substitued anthranilic acid derivatives are commonly found in the structure of many biologically active molecules. In this study, new members of hydrazones derived from anthranilic acid (1-15) were synthesized and investigated their effect on some metabolic enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase (α-Gly). Results indicated that all the molecules exhibited potent inhibitory effects against all targets as compared to the standard inhibitors, revealed by IC50 values. Ki values of compounds for AChE, BChE, and α-Gly enzymes were obtained in the ranges 66.36 ± 8.30-153.82 ± 13.41, 52.68 ± 6.38-113.86, and 2.13 ± 0.25-2.84 nM, respectively. The molecular docking study was performed for the most active compounds to the determination of ligand-enzyme interactions. Binding affinities of the most active compound were found at the range of -9.70 to -9.00 kcal/mol for AChE, -11.60 to -10.60 kcal/mol for BChE, and -10.30 to -9.30 kcal/mol for α-Gly. Molecular docking simulations showed that the novel compounds had preferential interaction with AChE, BChE, and α-Gly. Drug-likeness properties and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyzes of all synthesized compounds (1-15) were estimated and their toxic properties were evaluated as well as their therapeutic properties. Moreover, molecular dynamics simulations were carried out to understand the accuracy of the most potent derivatives of docking studies.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , ortoaminobenzoatos , Butirilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Hidrazonas/farmacologia , Relação Estrutura-Atividade , Glicosídeo Hidrolases/metabolismo , Estrutura Molecular
7.
Bioorg Chem ; 142: 106916, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913584

RESUMO

Development of Multitarget-Directed Ligands (MTDLs) is a promising approach to combat the complex etiologies of Alzheimer's disease (AD). Herein we report the design, synthesis, and characterization of a new series of 1,4-bisbenzylpiperazine-2-carboxylic acid derivatives 3-5(a-g), 7a-f, 8a-s, and their piperazine-2-yl-1,3,4-oxadiazole analogs 6a-g. In vitro inhibitory effect against Electrophorus electricus acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) from Equine serum was evaluated using modified Ellman's method, considering donepezil and tacrine as reference drugs. Lineweaver-Burk plot analysis of the results proved competitive inhibition of AChE and BChE with Ki values, in low micromolar range. The free carboxylic acid series 4a-g showed enhanced selectivity for AChE. Hence, 4c, 1,4-bis (4-chlorobenzyl)-piperazinyl-2-carboxylic acid), was the most active member of this series (Ki (AChE) = 10.18 ± 1.00 µM) with clear selectivity for AChE (SI âˆ¼ 17.90). However, the hydroxamic acids 7a-f and carboxamides 8a-s congeners were more potent and selective inhibitors of BChE (SI âˆ¼ 5.38 - 21862.5). Extraordinarily, 1,4-bis (2-chlorobenzyl)-piperazinyl-2-hydroxamic acid 7b showed promising inhibitory activity against BChE enzyme (Ki = 1.6 ± 0.08 nM, SI = 21862.5), that was significantly superior to that elicited by donepezil (Ki = 12.5 ± 2.6 µM) and tacrine (Ki = 17.3 ± 2.3 nM). Cytotoxicity assessment of 4c and 7b, on human neuroblastoma (SH-SY5Y) cell lines, revealed lower toxicity than staurosporine and was nearly comparable to that of donepezil. Molecular docking and molecular dynamics simulation afforded unblemished insights into the structure-activity relationships for AChE and BChE inhibition. The results showed stable binding with fair H-bonding, hydrophobic and/or ionic interactions to the catalytic and peripheral anionic sites of the enzymes. In silico predicted ADME and physicochemical properties of conjugates showed good CNS bioavailability and safety parameters. In this regard, compound (7b) might be considered as a promising inhibitor of BChE with an innovative donepezil-based anti-Alzheimer activity. Further assessments of the most potent AChE and BChE inhibitors as potential MTDLs anti-Alzheimer's agents are under investigation with our research group and will be published later.


Assuntos
Doença de Alzheimer , Neuroblastoma , Animais , Cavalos , Humanos , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Donepezila/farmacologia , Acetilcolinesterase/metabolismo , Tacrina/farmacologia , Simulação de Acoplamento Molecular , Piperazinas/farmacologia , Ácidos Carboxílicos , Relação Estrutura-Atividade , Doença de Alzheimer/tratamento farmacológico , Simulação de Dinâmica Molecular , Estrutura Molecular
8.
Chem Biodivers ; 21(2): e202301753, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38156418

RESUMO

In current study antioxidant, antidiabetic, antimicrobial, anticholinesterase, and human carbonic anhydrase I, and II (hCA I and II) isoenzymes inhibition activities of Astrodaucus orientalis different parts were investigated. Achetylcholinesterse (AChE) and butyrylcholinesterse (BChE) inhibitory activities of octyl acetate were determined via molecular docking. Quantitative assessment of specific secondary metabolites was conducted using LC-MS/MS. An examination of chemical composition of essential oils was carried out by GC-MS/MS. A thorough exploration of plant's anatomical characteristics was undertaken. The highest phenolics level and DPPH antioxidant capacity were seen in root and fruit. Fruit essential oil demonstrated the highest AChE inhibition (44.13±3.61 %), while root dichloromethane sub-extract had the best inhibition towards BChE (86.13±2.58 %). Cytosolic hCA I, and II isoenzymes were influentially inhibited by root oil with 1.974 and 2.207 µM IC50 values, respectively. The most effective extracts were found to be root all extract/sub-extracts (except water) against C. tropicalis and C. krusei strains with MIC value 160>µg/mL. Sabinene (29.4 %), α-pinene (20.2 %); octyl acetate (54.3 %); myrcene (28.0 %); octyl octanoate (71.3 %) were found principal components of aerial parts, roots, flowers, and fruits, respectively. Flower essential oil, fruit dicloromethane and ethyl acetate exhibited potent α-glucosidase inhibitory activity with 900, 40, and 937 µg/mL IC50 values, respectively.


Assuntos
Acetatos , Doença de Alzheimer , Diabetes Mellitus , Óleos Voláteis , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Cromatografia Líquida , Espectrometria de Massas em Tandem , Doença de Alzheimer/tratamento farmacológico , Isoenzimas , Compostos Fitoquímicos/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
J Biomol Struct Dyn ; : 1-16, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100567

RESUMO

Oxazolidinones are used as various potent antibiotics, in organisms it acts as a protein synthesis inhibitor, focusing on an initial stage that encompasses the tRNA binding process. Novel intramolecular aza-Michael reactions devoid of metal catalysts have been introduced in an oxazolidone synthesis pathway, different from α,ß-unsaturated ketones. Oxazolidinone derivatives were tested against acetylcholinesterase (AChE), carbonic anhydrase I and II (hCA I and hCA II) enzymes. All the synthesized compounds had potent inhibition effects with Ki values in the range of 13.57 ± 0.98 - 53.60 ± 6.81 µM against hCA I and 9.96 ± 1.02 - 46.35 ± 3.83 µM against hCA II in comparison to the acetazolamide (AZA) (Ki = 50.46 ± 6.17 µM for hCA I) and for hCA II (Ki = 41.31 ± 5.05 µM). Also, most of the compounds demonstrated potent inhibition ability towards AChE enzyme with Ki values 78.67-231.75 nM and compared to tacrine (TAC) as standard clinical inhibitor (Ki = 142.48 nM). Furthermore, ADMET analysis and molecular docking were calculated using the AChE, hCA I and hCA II enzyme proteins to correlate the data with the experimental data. In this work, recent applications of a stereoselective aza-Michael reaction as an efficient tool for of nitrogen-containing heterocyclic scaffolds and their useful to pharmacology analogs are reviewed and summarized.Communicated by Ramaswamy H. Sarma.

10.
Chem Biodivers ; 20(12): e202301362, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953698

RESUMO

This report presents the synthesis and characterization of a range of benzimidazolium salts featuring 3-cyanopropyl groups on the 1st nitrogen atom and varied alkyl groups on the 3rd nitrogen atom within the benzimidazole structure. Benzimidazolium salts were synthesized by N-alkylation of 1-alkyl benzimidazole with 3-cyanopropyl-bromide. The new salts were characterized by 1 H and 13 C-NMR, FT-IR spectroscopic and elemental analysis techniques. In this study, the enzyme inhibition abilities of seven nitrile substituted benzimidazolium salts were investigated against acetylcholinesterase (AChE) and carbonic anhydrase isoenzymes I and II (hCA I and hCA II). They showed a highly potent inhibition effect on AChE, hCA I and hCA II (Ki values are in the range of 26.71-119.09 nM for AChE, 19.77 to 133.68 nM for hCA I and 13.09 to 266.38 nM for hCA II). Reflecting the binding mode of the synthesized cyanopropyl series, the importance of the 2,3,5,6-tetramethylbenzyl, 3-methylbenzyl and 3-benzyl groups for optimal interactions with target proteins, evaluated by molecular docking studies. At the same time, the docking findings support the inhibition constants (Ki ) values of the related compounds in this study. Potential compounds were also evaluated by their pharmacokinetic properties were predicted.


Assuntos
Anidrases Carbônicas , Anidrases Carbônicas/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Sais/farmacologia , Anidrase Carbônica II , Espectroscopia de Infravermelho com Transformada de Fourier , Inibidores da Colinesterase/química , Anidrase Carbônica I , Benzimidazóis , Nitrogênio , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Relação Estrutura-Atividade , Estrutura Molecular
11.
Life (Basel) ; 13(11)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-38004276

RESUMO

Baicalin is the foremost prevalent flavonoid found in Scutellaria baicalensis. It also frequently occurs in many multi-herbal preparations utilized in Eastern countries. The current research has assessed and compared the antioxidant, antidiabetic, anticholinergic, and antiglaucoma properties of baicalin hydrate. Baicalin hydrate was tested for its antioxidant capacity using a variety of techniques, including N,N-dimethyl-p-phenylenediamine dihydrochloride radical (DMPD•+) scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+) scavenging activity, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) scavenging activity, potassium ferric cyanide reduction ability, and cupric ions (Cu2+) reducing activities. Also, for comparative purposes, reference antioxidants, such as butylated hydroxyanisole (BHA), Trolox, α-Tocopherol, and butylated hydroxytoluene (BHT) were employed. Baicalin hydrate had an IC50 value of 13.40 µg/mL (r2: 0.9940) for DPPH radical scavenging, whereas BHA, BHT, Trolox, and α-Tocopherol had IC50 values of 10.10, 25.95, 7.059, and 11.31 µg/mL for DPPH• scavenging, respectively. These findings showed that baicalin hydrate had comparably close and similar DPPH• scavenging capability to BHA, α-tocopherol, and Trolox, but it performed better than BHT. Additionally, apart from these studies, baicalin hydrate was tested for its ability to inhibit a number of metabolic enzymes, including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II), and α-glycosidase, which have been linked to several serious illnesses, such as Alzheimer's disease (AD), glaucoma, and diabetes, where the Ki values of baicalin hydrate toward the aforementioned enzymes were 10.01 ± 2.86, 3.50 ± 0.68, 19.25 ± 1.79, and 26.98 ± 9.91 nM, respectively.

12.
Saudi Pharm J ; 31(10): 101760, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37693735

RESUMO

Onion contains many dietary and bioactive components including phenolics and flavonoids. Spiraeoside (quercetin-4-O-ß-D-glucoside) is one of the most putative flavonoids in onion. Several antioxidant techniques were used in this investigation to assess the antioxidant capabilities of spiraeoside, including 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging, N,N-dimethyl-p-phenylenediamine radical (DMPD•+) scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+) scavenging activities, cupric ions (Cu2+) reducing and potassium ferric cyanide reduction abilities. In contrast, the water-soluble α-tocopherol analogue trolox and the conventional antioxidants butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and α-tocopherol were utilized as the standards for evaluation. Spiraeoside scavenged the DPPH radicals an IC50 of 28.51 µg/mL (r2: 0.9705) meanwhile BHA, BHT, trolox, and α-tocopherol displayed IC50 of 10.10 µg/mL (r2: 0.9015), 25.95 µg/mL (r2: 0.9221), 7.059 µg/mL (r2: 0.9614) and 11.31 µg/mL (r2: 0.9642), accordingly. The results exhibited that spiraeoside had effects similar to BHT, but less potent than α-tocopherol, trolox and BHA. Also, inhibitory effects of spiraeoside were evaluated toward some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II) and α-glycosidase, which are related to a number of illnesses, such as Alzheimer's disease (AD), diabetes mellitus and glaucoma disorder. Spiraeoside exhibited IC50 values of 4.44 nM (r2: 0.9610), 7.88 nM (r2: 0.9784), 19.42 nM (r2: 0.9673) and 29.17 mM (r2: 0.9209), respectively against these enzymes. Enzyme inhibition abilities were compared to clinical used inhibitors including acetazolamide (for CA II), tacrine (for AChE and BChE) and acarbose (for α-glycosidase). Spiraeoside demonstrated effective antioxidant, anticholinergic, antidiabetic and antiglaucoma activities. With these properties, it has shown that Spiraeoside has the potential to be a medicine for some metabolic diseases.

13.
Arch Pharm (Weinheim) ; 356(12): e2300370, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743251

RESUMO

A series of carvacrol-based thiosemicarbazide (3a-e) and 1,3,4-thiadiazole-2-amine (4a-e) were designed and synthesized for the first time. The structures were characterized by nuclear magnetic resonance and high resolution mass spectroscopy techniques. All compounds were examined for some metabolic enzyme activities. Results indicated that all the synthetic molecules exhibited powerful inhibitory actions against human carbonic anhydrase I and II (hCAI and II), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes compared to the standard molecules. Ki values of five novel thiosemicarbazides and five new 1,3,4-thiadiazole-2-amine derivatives (3a-e and 4a-e) for hCA I, hCA II, AChE, and BChE enzymes were obtained in the ranges 0.73-21.60, 0.42-15.08 µM, 3.48-81.48, 92.61-211.40 nM, respectively. After the experimental undertaking, an extensive molecular docking analysis was conducted to scrutinize the intricate details of interactions between the ligand and the enzyme in question. The principal focus of this investigation was to appraise the potency and efficacy of the most active compound. In this context, the calculated docking scores were noted to be remarkably low, with values of -8.65, -7.97, -8.92, and -8.32 kcal/mol being recorded for hCA I, hCA II, AChE, and BChE, respectively. These observations suggest a high affinity and specificity of the studied compounds toward the enzymes, as mentioned earlier, which may pave the way for novel therapeutic interventions aimed at modulating the activity of these enzymes.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Inibidores da Anidrase Carbônica/farmacologia , Aminas , Estrutura Molecular
14.
Chem Biodivers ; 20(10): e202301134, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37695993

RESUMO

Quinazolinones, which represent an important part of nitrogen-containing six-membered heterocyclic compounds, are frequently used in drug design due to their wide biological activity properties. Therefore, the novel quinazolinones were synthesized from the reaction of acylated derivatives of 4-hydroxy benzaldehyde with 3-amino-2-alkylquinazolin-4(3H)-ones with good yields (85-94 %) and their structures were characterized using Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1 H-NMR, 13 C-NMR), and High-Resolution Mass Spectroscopy (HR-MS). As the application of the synthesized compounds, their inhibition properties of the synthesized compounds on α-Glucosidase (α-Glu), Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE), and Carbonic anhydrase I-II (hCA I-II) metabolic enzymes were investigated. All compounds showed inhibition at nanomolar level with the Ki values in the range of 12.73±1.26-93.42±9.44 nM for AChE, 8.48±0.92-25.84±2.59 nM for BChE, 66.17±5.16-818.06±44.41 for α-Glu, 2.56±0.26-88.23±9.72 nM for hCA I, and 1.68±0.14-85.43±7.41 nM for hCA II. Molecular docking study was performed to understand the interactions of the most potent compounds with corresponding enzymes. Also, absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties of the compounds were investigated.

15.
Life (Basel) ; 13(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37763342

RESUMO

Determining the antioxidant abilities and enzyme inhibition profiles of medicinally important plants and their oils is of great importance for a healthy life and the treatment of some common global diseases. Kiwifruit (Actinidia deliciosa) oil was examined and researched using several bioanalytical methods comprehensively for the first time in this research to determine its antioxidant, antiglaucoma, antidiabetic and anti-Alzheimer's capabilities. Additionally, the kiwifruit oil inhibitory effects on acetylcholinesterase (AChE), carbonic anhydrase II (CA II), and α-amylase, which are linked to a number of metabolic illnesses, were established. Furthermore, LC-HRMS analysis was used to assess the phenolic content of kiwifruit oil. It came to light that kiwifruit oil contained 26 different phenolic compounds. According to the LC-HRMS findings, kiwifruit oil is abundant in apigenin (74.24 mg/L oil), epigallocatechin (12.89 mg/L oil), caryophyllene oxide (12.89 mg/L oil), and luteolin (5.49 mg/L oil). In addition, GC-MS and GC-FID studies were used to ascertain the quantity and chemical composition of the essential oils contained in kiwifruit oil. Squalene (53.04%), linoleoyl chloride (20.28%), linoleic acid (2.67%), and palmitic acid (1.54%) were the most abundant compounds in kiwifruit oil. For radical scavenging activities of kiwifruit oil, 1,1-diphenyl-2-picryl-hydrazil (DPPH•) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS•+) radicals scavenging techniques were examined. These methods effectively demonstrated the potent radical scavenging properties of kiwifruit oil (IC50: 48.55 µg/mL for DPPH•, and IC50: 77.00 µg/mL for ABTS•+ scavenging). Also, for reducing capabilities, iron (Fe3+), copper (Cu2+), and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) reducing abilities were studied. Moreover, kiwifruit oil showed a considerable inhibition effect towards hCA II (IC50: 505.83 µg/mL), AChE (IC50: 12.80 µg/mL), and α-amylase (IC50: 421.02 µg/mL). The results revealed that the use of kiwifruit oil in a pharmaceutical procedure has very important effects due to its antioxidant, anti-Alzheimer, antidiabetic, and antiglaucoma effects.

16.
Chem Biol Interact ; 383: 110655, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37573926

RESUMO

In this study, a total of 12 coumarin-chalcone derivatives, 6 of which are original were synthesized. The structures of the newly synthesized compounds were elucidated by 1H NMR, 13C NMR, IR, and elemental analysis methods (7g-7l). The antioxidant potencies measured by using CUPRAC method (Trolox equivalent total antioxidant capacity) were as follows: 7j > 7i > 7c > 7d > 7k > 7l > 7f > 7h > 7e > 7g > 7a > 7b. Furthermore, the compounds were evaluated against human carbonic anhydrases I, II, acetylcholinesterase and α-glycosidase enzymes. Compounds 7c, 7e, 7g, 7i, 7j and 7l showed promising human carbonic anhydrase I inhibition compared to the standard Acetazolamide (Ki: 16.64 ± 4.72-49.82 ± 5.82 nM vs Ki: 57.64 ± 5.41 nM). In addition, all compounds exhibited strong inhibition against acetylcholinesterase and α-glycosidase. Ki values were between 2.39 ± 0.97-9.35 ± 3.95 nM (Tacrine Ki: 13.78 ± 4.36 nM) for acetylcholinesterase, and 14.49 ± 8.51-75.67 ± 26.38 nM (Acarbose Ki: 12600 ± 78.00 nM) for α-glycosidase. Binding of 7g was predicted using molecular docking and stability of the complex was confirmed with molecular dynamics simulations which shed a light on the observed activity against acetylcholinesterase. Finally, cyclic voltammetry was also used for the electrochemical characterization of the synthesized compounds.


Assuntos
Chalcona , Cumarínicos , Humanos , Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica , Chalcona/farmacologia , Inibidores da Colinesterase/química , Glicosídeo Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Cumarínicos/farmacologia
17.
Antioxidants (Basel) ; 12(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37627517

RESUMO

Oxidation is one of the most important factors limiting shelf life and is a major deterioration process affecting both the sensory and nutritional quality of food. The high oxidation stability of lipids, which can be improved by the addition of antioxidants, is important for health protection, food quality, and economic reasons. In recent years, research on plant-derived antioxidants for use in human health and food has steadily increased. The aim of this study was to compare the antioxidant effects of green tea powder (GTP) in butter with those of commercial antioxidants (BHA, BHT, α-tocopherol, and Trolox). In addition, the effects on colour, sensory, gross physicochemical properties, and ß-carotene content were investigated in butter. After the separation of butter into five pieces, the first part was chosen as the control sample without GTP; the second part has 100 mg/kg of BHT added to it; and the third, fourth, and fifth parts had 1, 2, and 3% of GTP added in the samples. They were stored at 4 ± 1 °C. Analysis was performed at intervals of 15 days. According to the iron reduction, CUPRAC and FRAP methods were performed, and parallel results were observed. Using the radical elimination methods (ABTS, DPPH•, and DMPD•+), IC50 values were calculated for the samples. According to the IC50 values, the GTP-containing samples were good antioxidants. The total phenolic andf ß-carotene contents increased as the GTP addition increased. The addition of GTP had an antioxidant capacity equal to or higher than that of the BHT-added sample. For the production of a sensory-pleasing, greenish-coloured, new functional butter, the 1% GTP addition showed the most positive results.

18.
Chem Biodivers ; 20(10): e202300654, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610045

RESUMO

Apilarnil is 3-7 days old drone larvae. It is an organic bee product known to be rich in protein. In this study, the biological activities of Apilarnil were determined by its antioxidant and enzyme inhibition effects. Antioxidant activities were determined by Fe3+ , Cu2+ , Fe3+ -TPTZ ((2,4,6-tris(2-pyridyl)-s-triazine), reducing ability and 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) scavenging assays. Also, its enzyme inhibition effects were tested against carbonic anhydrase I and II isoenzymes (hCA I, hCA II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Antioxidant activity of Apilarnil was generally lower than the standard molecules in the applied methods. In DPPH⋅ radical scavenging assay, Apilarnil exhibited higher radical scavenging than some standards. Enzyme inhibition results towards hCA I (IC50 : 14.2 µg/mL), hCA II: (IC50 : 11.5 µg/mL), AChE (IC50 : 22.1 µg/mL), BChE (IC50 : 16.1 µg/mL) were calculated. In addition, the quantity of 53 different phytochemical compounds of Apilarnil was determined by a validated method by LC/MS/MS. Compounds with the highest concentrations (mg analyte/g dry extract) were determined as quinic acid (1091.045), fumaric acid (48.714), aconitic acid (47.218), kaempferol (39.946), and quercetin (27.508). As a result, it was determined that Apilarnil had effective antioxidant profile when compared to standard antioxidants.

19.
Chem Biodivers ; 20(8): e202300469, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37432096

RESUMO

In addition to the first synthesis of the natural bromophenol butyl 2-(3,5-dibromo-4-hydroxyphenyl)acetate (1), indene derivatives 34 and 35 were synthesized from 3-phenylpropenal derivatives in BBr3 medium. Five known natural bromophenols and some derivatives were synthesized by known methods. Cholinesterase (ChEs) inhibitors reduce the breakdown of acetylcholine and are used in the treatment of Alzheimer's disease (AD) and dementia symptoms. The inhibition effects of all obtained compounds were examined towards acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glycosidase enzymes. All synthesized compounds demonstrated the strong inhibition effects against both cholinergic enzymes. For determination of Ki values of novel bromophenols Lineweaver-Burk graphs were obtained. Ki values were found in the ranging of 0.13-14.74 nM for AChE, 5.11-23.95 nM for BChE, and 63.96-206.78 nM for α-glycosidase, respectively. All bromophenols and their derivatives exhibit effective inhibition profile when compared to positive controls.


Assuntos
Produtos Biológicos , Butirilcolinesterase , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Produtos Biológicos/farmacologia , Inibidores da Colinesterase/farmacologia , Glicosídeo Hidrolases/metabolismo , Simulação de Acoplamento Molecular
20.
Chem Biodivers ; 20(8): e202300687, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37427460

RESUMO

Lactoperoxidase enzyme (LPO) is secreted from salivary, mammary, and other mucosal glands including the bronchi, lungs, and nose, which had functions as a natural and the first line of defense towards viruses and bacteria. In this study, methyl benzoates were examined in LPO enzyme activity. Methyl benzoates are used as precursors in the synthesis of aminobenzohydrazides used as LPO inhibitors. For this purpose, LPO was purified in a single step using sepharose-4B-l-tyrosine-sulfanilamide affinity gel chromatography with a yield of 9.91 % from cow milk. Also, some inhibition parameters including the half maximal inhibitory concentration (IC50 ) value and an inhibition constant (Ki ) values of methyl benzoates were determined. These compounds inhibited LPO with Ki values ranging from 0.033±0.004 to 1540.011±460.020 µM. Compound 1 a (methyl 2-amino-3-bromobenzoate) showed the best inhibition (Ki =0.033±0.004 µM). The most potent inhibitor (1 a) showed with a docking score of -3.36 kcal/mol and an MM-GBSA value of -25.05 kcal/mol, of these methyl benzoate derivatives (1 a-16 a) series are established H-bond within the binding cavity with residues Asp108 (distance of 1.79 Å), Ala114 (distance of 2.64 Å), and His351 (distance of 2.12 Å).


Assuntos
Lactoperoxidase , Leite , Feminino , Animais , Bovinos , Simulação de Acoplamento Molecular , Lactoperoxidase/metabolismo , Leite/química , Leite/metabolismo , Benzoatos/farmacologia , Benzoatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...